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Abstract

The impact of a peculiar confined environment (i.e., underground mine) on the characteristics of the WBAN
(Wireless Body Area Network) channel is evaluated in this article. Channel characteristics of WBAN are
different from those of other wireless channels, especially in the presence of shadowing obstacles at Non-
Line-of-Sight (NLOS). Moreover, directive antennas could be used for off-body communications as a mean
to minimize the interaction with human body. Hence, in this study, the off-body performance of a single-
input single-output (SISO) system was evaluated in Non-Line-of-Sight (NLOS) situations and compared
with Line of Sight (LOS) measurements, at the 2.45 GHz band, for two antenna setups. Experimental
results of the Rician k-factor, RMS delay spread, and path loss are obtained and discussed from
measurements conducted at an underground mine gallery with Patch and Omnidirectional antennas. The
results show that the average value of the Rician k-factor generally increases with distance, due to an
increased multipath energy losses compared to the LOS energy loss. Moreover, the path loss exponent
decreases at NLOS while the path loss values are increased due to human shadowing obstacle. The
channel capacity is decreased at NLOS and as we increase the distance, due to the path loss effect.
Directivity did not have a significant impact on the channel parameters.
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I. INTRODUCTION

Recent advances in wireless technology have led to the development of wireless body area
networks (WBAN). WBAN is a conceptual wireless network technology where a set of
communicating devices are located in a distributed sensor network around the human body [1].
Data of vital body parameters and movements is collected and communicated using short-range
wireless communication techniques to a close by command station. Wireless Off-body
communication is a technology that deals with the communication links between devices
mounted on the body, and other devices, or access points, away from the body. It found
applications in the industrial, entertainment, sport, and medical fields. Among the examples of
this technology are wearable RFID tags and medically oriented body-worn sensors. In off-body
links, much precision and attention should be taken in antenna design, placement, and
orientation. For optimal off-body communication, the antennas’ radiation patterns should be
directed away from the body [2].

Recently, the rising accidents rates in the mining field pushed toward exploring new
communication schemes destined to the safety of the miners in such off-body communication
scheme. Indeed, the off-body technology has emerged as a promising communication scheme
dedicated to the miners’ safety [3-4]. Toxic gases’ levels could be displayed to the miners and vital
information could be delivered to the command station, in a timely manner. This allows
improving the miners’ safety and health through the fast detection of potential problems which
eases the decision making. However, in a mine environment, the reliability of the wireless link is
affected by short-term and long-term fading mainly caused by multipath communication, and
shadowing [1]. Moreover, the off-body communication link performance depends on the allocated
frequency band and the directivity of the transmitter (Tx) and the receiver (Rx) antennas. Hence,
a good characterizing study of the off-body channel in a mine environment should explore the
effect of directivity and link obstruction at NLOS.

This work focuses on the 2.45 GHz ISM (industrial, scientific and medical) band. This band is
suitable for off-body propagation studies [5]. At this frequency, the propagation is due to creeping
waves and multipath signals resulting from the reflections at the surrounding environment [6].
Numerous papers in the literature deal with off-body communication systems, for patients’ vital
signs monitoring application as well as entertainment applications [1-2]. Moreover, the 2.45 GHz
band has been thoroughly investigated for applications in a mine gallery, for regular radio
transmission (not involving the human body), using different kinds of antennas such as monopole
and patch antennas [7]. In fact, wireless communication systems in an underground environment
should be designed to provide reliable services with high throughput [8], bearing in mind that the
link capacities are limited by the transmission power and the bandwidth of the radio link [9-10].

In our previous research studies [3-4], the off-body performance was investigated using
monopole and patch antennas and a single-antenna setup was considered to assess the path loss,
RMS delay spread and channel capacity. However, Rician k-factor was not considered to
determine the best distribution that would approximate the corresponding capacity [3-4]. In this
paper, k-factor results are presented along with the corresponding test for the best cumulative
distribution function (CDF) approximation. Furthermore, the overall results characterizing the
off-body channel in terms of the considered Rician k-factor, channel impulse response, path-loss,
RMS delay spread and coherence bandwidth, at the 2.45 GHz band, are compared using two-
antenna setups exploring the effect of directivity. The link obstruction at NLOS is also discussed
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and the channel capacity is calculated (assuming a fixed transmitted power) and compared to five
usual distributions in order to determine the closest CDF approximation. To ease the reading,
the notations in Table 1 were used throughout the paper.

The remainder of the paper is organized as follows. Sec. Il describes the measurements setup
used to characterize the underground off-body channel and to evaluate the corresponding channel
capacity for a WBAN. Sec. 11l combines the results from the different measurement scenarios to
determine and discuss the different channel parameters. Finally, Sec. IV discusses the
conclusions and results derived from this study.

TABLE 1. NOMENCLATURES FOR THE DIFFERENT CONFIGURATIONS.

Configuration Patch Monopole

Link LOS NLOS LOS NLOS

Nomenclature LOS-P NLOS-P LOS-M NLOS-M

Il. MEASUREMENT PROCEDURE FOR OFF-BoDY CHANNEL CHARACTERIZATION IN AWBAN

WBAN Channels are classified into four categories (C1~C4), as illustrated in Fig. 1 [5]. These
channels are categorized by their device location. The in-body channel (Cl) is related to the
inside of the body; the C2 channel is related to the surface and inside of the body; the on-body
channel (C3) is related to the surface of the body and the off-body channel (C4) is related to off-
body communications where the maximum distance is 5 m [1].

Off-Body On-Body / In-Body

% Implant /\

: Non-Implant
c3
A
ca <..c2 Y

FIGURE 1. ILLUSTRATION OF WBAN CHANNELS.
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FIGURE 2. MEASUREMENT SETUP IN THE CONSIDERED UNDERGROUND GALLERY.

In this paper, the off-body channel is characterized at the 2.45 GHz band and the corresponding
measurements are conducted in a peculiar indoor environment, i.e., an underground gold mine
located in Val-d'Or, Quebec, Canada, and managed by the Mining and Mineral Sciences
Laboratories-Canadian Center for Minerals and Energy Technology (MMSL-CANMET). The
considered underground gallery is located at the 40 m underground level. It stretches over a
length about 140 m with a width and height of about 3 m. Photography of the measurement
setup in the corresponding underground gallery is shown in Fig. 2. The mine gallery consists
mainly of very rough walls and uneven floor. Cables and pipes are stretched along these walls
(near the ceiling). The temperature is maintained at 6 °C, with a humidity level of nearly 100 %
throughout the year. There are some water puddles with different dimensions along the gallery
and the water dripping through the walls.

FIGURE 3. MINING MACHINERY NEAR THE MEASUREMENT SETUP.
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FIGURE 4. REPRESENTATION OF THE WBAN SYSTEM IN A MINE ENVIRONMENT.

There is mining machinery few meters away from the measurement’ setup. Metal rods and
screens cover the ceiling of the gallery contributing to multipath phenomenon within a dusty
environment. The chosen site is an ideal environment to study the LOS and NLOS multipath
propagation. The NLOS communication is achieved when the direct propagation path is
obstructed by a human subject wearing miner’'s outfit, hence emulating the usual human
shadowing activities inside the mine. Fig. 3 illustrates the mining machinery in a gallery near

the measurement setup; Fig. 4 depicts a graphic representation of the WBAN system inside a
mine.

distance=1m to 5m

™ >

VNA of type Anritsu

FIGURE 5. ILLUSTRATION OF THE CONSIDERED MEASUREMENT SETUP.
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TABLE 2. MEASUREMENT PARAMETERS.

Equipment Parameter Value
Center frequenc
quency 2.45 GHz
Number of points 6401
VNA (of type Anritsu) ]
Sweep time Auto
Full-2-port
Calibration
(Tx power = -10 dBm)
Gender Male
Human body Height 180 cm
Weight 75 kg
Type Monopole
Antenna Distance to body 5-10 mm
Orientation Head to Head

The process of calibration is necessary to remove the losses introduced by the cables from the
measured frequency response S21. Hence, the system calibration is performed at 1 m separation
between the transmitter and the receiver. This 1 m Tx-Rx separation do is picked to be the
reference distance for the path loss modeling. After the calibration, all the parameters were
configured, namely the transmitted power, the frequency range, and the number of points as
presented in Table 2.

The measurements campaign aims to investigate the small and the large scale variations in the
fading signal. Large-scale channel characterization consists of path loss (PL) and shadowing
effect, while the small-scale channel characterization consists of small scale fading which is
caused by the multipath propagation. The transmitting antennas were placed at a fixed position
in the middle of the mine pathway. The receiving antennas were placed on the right side of the
chest of a 1.80 m, 75 kg male subject wearing a miner’s outfit, as seen in Fig. 2. The transmitting
and the receiving antenna elements are kept at the same distance from ground. During the
measurements, 6 data snapshots were collected at each distance, from a distance of 1 m through
5 m away from the transmitter, as shown in Fig. 5. The transmitting and receiving antennas
were connected to the two ports of the previously calibrated vector network analyzer (VNA). At
each snapshot, the S21 values were recorded for 6401 frequency samples around the center
frequency of 2.45 GHz, as indicated in Table 2. The noise floor for the measurements was
considered at -90 dBm, which is considerably higher than the average power for Nyquist Noise,
the noise floor for the VNA, and the observed noise floor from the measurements.
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I11. RESULTS AND DISCUSSION
A. Channel impulse response

The channel impulse response h(t) is acquired using the Inverse Fourier Transform (IFT) of the
average of six measured channel frequency responses (given by the scattering parameter Sz1). It
can be seen that the LOS signal generally carries the highest power among the multipath
received signals, when the link is not obstructed. In general, the first arriving multipath signal is
highest for the smallest distances and decreases as the Tx-Rx separation increases. Some
exceptions to this general result were observed; for example, in NLOS-M, the first arriving
multipath component for a Tx-Rx separation of 5 m is higher than that of a Tx-Rx separation of
4 m due to constructive multipath additions. It is also observed that the received signal’ power at
LOS is higher than the corresponding NLOS power level for both the monopole and the patch
antennas. Figs. 6 and 7 represent the impulse responses for the monopole and the patch antenna
setups at the 2 m and 4 m distances.

10 Impulse Response at LOS " Impulse Response at NLOS
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FIGURE 6. IMPULSE RESPONSES FOR TX-RX SEPARATIONS OF 2 M AND 4 M FOR A MONOPOLE ANTENNA.
B. Rician K-Factor

The Rician k-factor is an indicator of link quality [11], measured as the relative strength of the
direct and scattered components of the received signal, as expressed in the following equation
[12]:

K(dB)=10log [%]
1)
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where ¢ denotes the mathematical expectation (average) and var(=) refers to the variance of the
channel vector H. The k-factor was calculated for each distance between Tx and Rx. Fig. 8 shows
the Rician k-factor versus Tx-Rx separation for the monopole antenna setup, and Table 3 shows
the k-factor statistics for the monopole and patch antenna setups. The results show that the
Rician k-factor generally increases for the first three distances, decreases for the 4 m distance,
and increase again for the 5 m distance. This is due to the fact that the scattered components
encounter additional reflections against the walls, the ceiling and the floor, as the distance is
increased; the additional reflections correspond to additional losses of multipath energy due to
the increased propagation distance. This decrease in the multipath power (relative to the LOS
power) is mitigated at the 4 m distance, due to the specific geometry of the gallery. Moreover, it is
observed that the Rician k-factor for the monopole setup is higher than that of the patch setup. In
fact the monopole antenna has a much larger bandwidth than the patch antenna; hence, the
impulse response of the off-body channel using the patch antenna is wider than that which uses
the monopole antenna as illustrated in Figs. 6 and 7. This means that the powers of the
multipath signal (relative to the LOS signal power) when using the patch antenna are higher
than their monopole counterparts, which explains the K-factor results.

60 Impulse Response at LOS &0 Impulse Response at NLOS
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= | =
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120; 1200
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FIGURE 7. IMPULSE RESPONSES FOR TX-RX SEPARATIONS OF 2 M AND 4 M FOR A PATCH ANTENNA.

C. Path loss

The path loss is defined as the ratio of the transmitted power to the local average of the
received power [7]. It was obtained from the path gains, by averaging over the frequency samples
and the different snapshots; it is mathematically represented as follows:
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1 S
PL(d(p))=—20l0g,, WZZ’H ; (n)’
s'Vf j=ln=1 (2)

where PL(d(p)) is the path loss at the position of p (with Tx-Rx separation d(p)); Ns and N are the

p
number of the snapshots and frequency samples, respectively. H, (n)denotes the measured Sz:

for the position p, j* snapshot, and nt frequency sample [2]. When expressed in terms of the Tx-
Rx distance, the path loss is modeled as follows [7]:

PL(d)= PLdB(d0)+10.a.Zoglo[diJ+ X (3)
0
where Pl (do) is the mean path loss at the reference distancedo , dis the distance where the

path loss is calculated, ¢ is the path loss exponent (determined using least square linear
regression analysis), and X is a zero mean Gaussian variable (in dB) [7].

The path loss results and a linear regression of these values are plotted in Figs. 9 and 10, for
both the patch and monopole antennas at the LOS and NLOS situations.

TABLE 3. STATISTICS OF THE K-FACTOR FOR THE OFF-BODY CHANNELS INSIDE THE MINE GALLERY (MINIMUM,
MAXIMUM, AVERAGE AND STANDARD DEVIATION MEASURED VALUES).

Min Max Mean Std

k-factor (dB
(dB) 2.7356 5.9711 4.3024 1.3779

LOS-M
k-factor (dB)
-2.4332 -1.2148 -1.9021 0.4762
LOS-P
K factor of the measurements
10

—k factor for LOS-P
—k factor for LOS-M

K factor(dB)
)

_5 | | | | | |
10.log(distance/1m)

FIGURE 8. K-FACTOR FOR THE LOS-M OFF-BODY CHANNELS.
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FIGURE 9. PATH LOSS VALUES AND THEIR LINEAR REGRESSION FOR THE MONOPOLE ANTENNA.
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FIGURE 10. PATH LOSS VALUES AND THEIR LINEAR REGRESSION FOR THE PATCH ANTENNA.

TABLE. 4. PL EXPONENT VALUES FOR THE DIFFERENT OFF-BODY CHANNEL CONFIGURATIONS.

Configuration Patch Monopole
Parameters LOS N-LOS LOS N-LOS
PL-exponent 248 1.26 2.16 1.19

The path loss exponent « is found to be close to the free-space path-loss exponent (which is
equal to 2) for the LOS configurations, for both the monopole and the patch antennas. Hence, the
linear regression analysis suggests that the off-body signal decays in LOS with about the same
rate as it would decay in free space. The results in Table 4 show that, relative to a LOS scenario,
the path loss exponent decreases in NLOS configurations for both monopole and patch antennas.
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However, the path loss values at NLOS are higher compared to a comparable LOS scenario due
to the shadowing effect of the human obstacle. This suggests that the signal is damped slower in
NLOS due to constructive multipath power additions. This result is expected because the path
loss exponents are typically low for Off-body links in NLOS cases as discussed in [13-15].

D. Time dispersion parameters

The time dispersion parameters are determined from the power delay profile (PDP), which
represents the power received in the time domain. PDP is determined by calculating the
statistical average of the magnitude squared of the impulse response as follows:

POP() = (h()) @

The RMS delay spread and the coherence bandwidth, shown in Figs. 11 and 12, were
determined using equations (5) and (6) respectively, as follow [16]:

—J.2_ 2
Trs —VT — 1T

Q)

— 2
where 7 denotes the mean excess delay and 7 is the second moment of the PDP, while the
coherence bandwidth is

B~1

’ ST s (6)

In general, the RMS delay spread increases whereas the coherence bandwidth decreases with
the increase of the distance, for both the monopole and the patch antenna setups. One exception
of this result happens in the distance of 5 m where the RMS delay spread values are smaller
compared to the 4 m values for both the monopole and the patch antennas. This is due to the fact
that the multipath richness is higher for the 4 m distance than the 5 m distance at NLOS. Fig. 12
shows RMS delay spread values that are between 15 ns and 66 ns and coherence bandwidths in
the range of 3-14 MHz for the LOS-M case. For the NLOS-M conditions, the RMS delay spread is
between 35 ns and 82 ns.

From Fig. 11, the patch antenna setup exhibits higher values of the RMS delay spread (lower
values of the coherence bandwidth) compared to the corresponding monopole setup
measurements. These results are due to the fact that the monopole antenna is able to collect a
stronger LOS or creeping wave component (compared to the multipath components) than the
patch antenna, due to its large bandwidth as explained by the k-factor results. Moreover, the
RMS delay spread is smaller at LOS compared to NLOS due to the increased multipath richness
and decreased power of the first multipath component (relative to the other multipath signals) at
NLOS.
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FIGURE 12.TIME DISPERSION VALUES VS. DISTANCE FOR THE MONOPOLE SETUP.

E. Channel Capacity

Channel capacity CDFs are plotted in Figs. 13 and 14 for monopole and patch setups at LOS;
Fig. 15 represents the average capacities for the monopole and patch setups at both LOS and
NLOS situations. This channel capacity is derived from measurements using Shannon formula

as follows [17]:

C
|2

where H is the normalized channel response and p is the average signal to noise ratio (SNR).

bps
zZ

}= log, {1+ pHF)

(7)
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FIGURE 13. CAPACITY CDFs FOR THE FIVE LOS-M OFF-BODY CHANNEL DISTANCES.

FIGURE 14. CAPACITY CDFs FOR THE FIVE LOS-P OFF-BODY CHANNEL DISTANCES.
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The above results show that the channel capacity at a certain probability level decreases with
distance at LOS. This is explained by the fact that the smaller distances correspond to higher
received average powers and hence higher average SNRs which have a direct impact on the
capacity as given in (3). Moreover, it is observed that capacity values in NLOS situations are
smaller than their corresponding LOS values due to the decay in power associated with the
human shadowing effect. Comparing the channel capacities for the monopole and the patch
setups, it is observed that the NLOS-M capacities are higher than the corresponding NLOS-P
capacities. Moreover, the LOS-M capacities at the 3 m and 5 m distances are higher than their
corresponding LOS-P capacities. This is due to the ability of the monopole antenna, which has a
broad bandwidth, to efficiently capture the LOS signal. Hence, the directivity of the patch
antenna is only favorable at the smaller LOS distances, where the LOS component’ power is
considerably large due to the efficient Tx-Rx alignment.

The different configurations’ capacity CDFs at the 3 m distance were compared to several CDF
approximations as illustrated in Figs. 16-19. The most accurate approximations for both the
LOS-P and LOS-M are the Rice and the Nakagami distributions. For the NLOS-P, the Rician and
lognormal distributions best describe the capacity CDF of the measurements. Finally, for the
NLOS-M, the Nakagami and Rician distribution best approximate the capacity CDF of the
measurements. Furthermore, the Rayleigh distribution, which usually characterizes the radio
channels’ fading, does not characterize the patch nor monopole capacity distributions. This is due
to the fact that the Rayleigh fading is not valid for WBAN distributions due to the presence of a
strong direct link [10], which is established with LOS or creeping wave communications. In these
conditions, the Rician distribution usually characterizes the WBAN channel, which explains the
results.
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V. CONCLUSION

In this paper, the off-body channel was characterized at 2.45 GHz for a WBAN in a mine
gallery using patch and monopole antennas considering LOS and NLOS situations. It can be
noted that the k-factor is not as high as expected in a short range line-of-sight (LOS)
communication. This may be due to the presence of the human body involving creeping wave
signals that attenuate more rapidly compared to the free space propagation. It was also observed
that the path-loss exponent decreases in NLOS situations compared to a corresponding LOS
situation for both monopole and patch antenna setups, due to constructive multipath combining.
The monopole antenna setup exhibit lower values of the RMS delay spread compared to their
corresponding patch setup’ RMS delay spread values. This is due to the fact that the monopole
antenna (which has a large beam width) is able to collect the LOS or the creeping wave
component better than the patch antenna. The RMS delay spread is higher at NLOS situations
compared to a LOS situation for both antenna setups. This is due to the fact that the multipath
powers increases (compared to the first arriving multipath signal’ power) at NLOS. The Rician K-
factor further emphasizes the time dispersion results (at LOS) with values generally increasing
(except for the 4 m distance) due to the increased reflections through walls and ceiling. The
channel capacities decrease with distance for both LOS-M and LOS-P, due to the path loss effect.
At NLOS, the multipath richness did not overcome the shadowing of the LOS component, and
hence the capacity is lower than that of a corresponding LOS situation. The NLOS-M capacities
are higher than the corresponding NLOS-P capacities, because of the efficiency of the monopole
antenna in capturing the LOS or the creeping wave signals. For both LOS and NLOS
configurations, the Rician distribution approximates the CDF of the measurements (at the 3 m
distance), due to the presence of either a strong LOS component or a strong creeping wave signal.
Although both the patch and the monopole results are acceptable for underground
communications, the channel parameters using the monopole setups are better than the
corresponding patch setup parameters in most situations. The mine environment favors the use
of the monopole antenna more than the patch antenna for off-body communications at the
2.45 GHz band. We conclude that an in-mine off-body system at 2.45 GHz destined to improve
the security of the miners should use monopole antennas rather than the patch antennas.
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