
 International Journal of Advanced Computer Science and
Information Technology (IJACSIT)
Vol. 3, No. 4, 2014, Page: 344-353, ISSN: 2296-1739
© Helvetic Editions LTD, Switzerland
www.elvedit.com

Analysis of Multiple String Pattern Matching
Algorithms

Author

Akinul Islam Jony
Department of Informatics,
Technical University of Munich

akinul@mytum.de
Munich, Germany

Abstract

Multiple string pattern matching is a basic problem in computer science and is used to locate all the
appearances of a finite set of patterns inside an input text. It is widely used in many applications for
searching, matching, filtering, and detecting a set of pattern. In this paper, to illustrate and for the better
understanding of this particular problem, the widely used multiple string patterns matching algorithms have
been analyzed and discussed. A theoretical and experimental result along with the analysis and discussion
of the algorithms is presented as well in this paper. An extensive reference list is also included at the end of
the paper.

Key Words

Algorithms, Multiple Pattern, String Matching, String Searching.

I. INTRODUCTION

 String pattern matching or searching is the act of checking for the presence of the constituents
of a given pattern in a given text where the pattern and the text are strings over some alphabet.
It is an important component of many problems and it is used in many application such as text
editing, data retrieval, data filtering (also called data mining) to find selected patterns, DNA
sequence matching, detecting certain suspicious keywords in security applications, and of course,
many other applications. The string searching or string matching problem consists of finding all
occurrences of a set of pattern in a text, where the pattern and the text are strings over some
alphabet.

Multiple string pattern matching problems has been a topic of intensive research that has
resulted in several approaches for the solution such as multiple keyword generalization of Boyer-

Analysis of Multiple String Pattern Matching Algorithms
Akinul Islam Jony

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved
www.elvedit.com 345

Moore algorithm [4], Boyer-Moore-Horspool algorithm [5] (which is simplified version of Boyer-
Moore algorithm), Aho-Corasick algorithm [1], Commentz-Walter algorithm [2], Fan-Su
algorithm [11] (which is a combination of Aho-Corasick and Boyer-Moore algorithms), Wu-
Manber algorithm [3], and Set Backward Oracle Matching (SBOM) algorithm [12], [13] (which is
the extension of the Backward Oracle Matching (BOM) algorithm [13], [14]). This paper mainly
presents the analysis of mostly used algorithms for multiple string pattern matching problems:
the Aho-Corasick algorithm, the Commentz-Walter algorithm, and the Wu-Manber algorithm.
Experimental results of these algorithms are included for the analysis and discussion about
multiple pattern matching problems. This paper also discusses the main theoretical results for
each of the algorithm. The performance of each algorithm is shown against the length of pattern
and the number of pattern in a pattern set. An extensive list of references is also presented at the
end of this paper.

This paper structures as follows: Section II briefly describes the multiple pattern matching
algorithms specifically Aho-Corasick, Commentz-Walter, and the Wu-Manber algorithm, Section
III outline the experiment methodology, Section IV presents the experimental results on the
multiple pattern matching algorithms, Section V presents the analysis and discussion on pattern
matching problem based on the experimental results and existing works, and Section VI gives
the conclusion of this paper.

II. MULTIPLE PATTERN MATCHING ALGORITHMS

This section presents the overview of most popular solutions for the multi-pattern matching
problem: Aho-Corasick algorithm [1], Commentz-Walter algorithm [2], and Wu-Manber
Algorithm [3].

A. Aho-Corasick algorithm

Aho-Corasick algorithm, a variant of the Knuth-Morris-Pratt algorithm [7], was the first
algorithm to solve the multiple string pattern matching problems in linear time based on
automata approach. This algorithm serves as the basis for the UNIX tool fgrep.

Aho-Corasick algorithm consists of two parts. In the first part they constructed a finite state
pattern matching machine from the set of keywords and in the second part, the text string as
input is applied to the pattern matching machine. The machine signals whenever it has found a
match for a keyword (pattern). The pattern matching machine consists of a set of states and each
state is represented by a number. The behavior of the pattern matching machine is dictated by
three functions: a goto function g, a failure function f, and an output function output. Figure 1
shows a sample pattern matching machine for the set of patterns, p = {he, she, his, hers} [1].

The goto function g maps a pair consisting of a state and an input symbol into a state or the
message fail. The failure function f maps a state into a state. The failure function is consulted
whenever the goto function reports fail. The output function of certain states indicates that a set
of keywords has been found.

International Journal of Advanced Computer Science and Information Technology
Volume 3, Issue 4, 2014, ISSN: 2296-1739

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved

www.elvedit.com 346

FIGURE 1: A SAMPLE PATTERN MATCHING MACHINE.

The construction of Aho-Corasick automaton machine takes running time linear in the sum of
the lengths of all patterns/ keywords. This involves building the pattern tree (keyword tree) for
the set of pattern and then converting the tree to an automaton (pattern matching machine) by
defining the functions g (goto function), f (failure function), and output function for labeling
states with the keyword(s) matched. The space or memory requirements of the Aho-Corasick
algorithm can be quite large depending on the pattern set and also the length of each pattern in a
pattern set. The matching process is simply stepping through the input characters one at a time
and checks if there is any matching. Each step in pattern matching machine happens in constant
time. So, the Aho-Corasick matcher always operates in O(n) running time.

B. Commentz-Walter algorithm

Commentz-Walter presented an algorithm for the multi-pattern matching problem that
combines the Boyer-Moore technique with the Aho-Corasick algorithm. Commentz-Walter
combines the filtering functions of the single pattern matching Boyer-Moore algorithm and a
suffix automaton to search for the occurrence of multiple patterns in an input string. The tree
used by Commentz-Walter is similar to that of Aho-Corasick’ pattern matching machine but is
created from the reversed patterns. A sample reversed pattern tree is shown in figure 2.

FIGURE 2: A SAMPLE REVERSED PATTERN TREE

Analysis of Multiple String Pattern Matching Algorithms
Akinul Islam Jony

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved
www.elvedit.com 347

The original paper presented two versions of the algorithm. In all version of the algorithm a
common program skeleton is used with different shift function. The Commentz-Walter algorithm
is also consists of two phase: pre-computing phase and matching phase. The pre-computation
phase of algorithm is responsible for creating a pattern tree by using the reversed pattern (see
figure 2). The matching phase of the Commentz-Walter algorithm is combination of two ideas.
One is from the ideas of Aho-Corasick’ finite automata technique (in pattern tree) and another
one is from the Boyer-Moore shifting techniques (in right-to-left matching). In this algorithm a
match is conducted by scanning backwards through the input string. At the point of mismatch
some number of characters about the input string is known (that is, the number of characters
that ware matched before the mismatch) and this information then is used as an index. The
index is used in a pre-computed table to determine a distance which is later helps to shifting
before commencing the next match attempt.

C. Wu-Manber Algorithm

Wu-Manber algorithm is a simple variant of the Boyer-Moore algorithm that uses the bad-
character shift for multiple pattern matching. They actually come to the idea of this algorithm
after making a UNIX based tool agrep [10] which was for searching many patterns in files. To
improve the performance, they come through a unique idea, that is, their algorithms looks at
block of text instead of single character. So, they consider both pattern and text as blocks of size
B instead of single characters. As recommended in their paper [3], in practice B could be equal to
2 for a small pattern set size or to 3 otherwise.

The operational process of the WM algorithm includes two phases. In first phase which is called
preprocessing phase, three tables are constructed by the patterns, the SHIFT, the PREFIX and
the HASH tables. The SHIFT table stores the shift values of the block characters that determine
the safe shifting of characters during the searching phase. If a block of B characters does not
occur in any pattern, then the shift value for that block assigns to the maximum value, which is
m − B + 1. The HASH table stores hashed values (h) of B characters suffix of each pattern while
the PREFIX stores hashed values (h′) of B’ characters prefix of a list of patterns that they have
the same suffix.

The second part of the algorithm is the searching phase. During this phase, the algorithm is
searching for the occurrences of all patterns in the input text with the assistant of the three
tables that have been created by the previous state. Firstly, a hash value (h) for the block of B
characters is calculated into the current search window and the shift value for that is checked
(SHIFT[h]). If the shift value is greater than zero, then the current search window is shifted by
SHIFT[h] positions, or else there is a potential matching and the tables HASH and PREFIX
should be considered in order to validate the matching.

The first thing is to compute the minimum length of a pattern, call it m, and consider only the
first m characters of each pattern. This requirement is crucial to the efficiency of the algorithm. If
one of the patterns is very short, say of length 2, then it is not possible to shift by more than 2, so
having short patterns inherently makes this approach less efficient. The expected running time

International Journal of Advanced Computer Science and Information Technology
Volume 3, Issue 4, 2014, ISSN: 2296-1739

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved

www.elvedit.com 348

complexity of the main matching phase/ searching phase is shown by Wu-Manber to be less than
linear in n (the length of the input text) [3].

III. EXPERIMENT METHODOLOGY

To evaluate the performance of the multiple pattern matching algorithms, the practical
running time is used as a measure. Practical running time is the total time an algorithm needs to
find all occurrences of a pattern set in an input text including any preprocessing time. In the
experiment, English text is considered as an input text where the pattern set is chosen randomly
for the searching/ matching process. The input text used in this experiment is consists of 477,048
characters excluding spaces and it contains 99,449 words in total. For the implementation of
these algorithms JAVA is used as a programming language. All the experiments are run on a
computer which has a 2.20 GHz Intel Core 2 Due processor, 4 GB RAM, and 64-bit Windows 7
Operating System.

IV. EXPERIMENTAL RESULTS

In this section of the paper the experimental results of the algorithms are presented. The
performance of the algorithms is shown by measuring the running time against the number of
pattern and length of pattern (pattern size) in a pattern set. The table 1 and figure 3 shows the
running time of Aho-Corasick algorithm with different number of patterns (10 to 500 patterns)
but the minimum length of pattern is 2. In Aho-Corasick algorithm, if the number of pattern is
increases, the running time is also increase.

Table 2 and figure 4 also shows the running time of Aho-Corasick algorithm but in this time
with different length of pattern (length 3 to 17) and fixed number of pattern (in this case 10). In
Aho-Corasick algorithm, if the length of pattern is increases, the running time is also increase.

TABLE 1: RUNNING TIME OF AHO-
CORASICK ALGORITHM DEPENDING ON

NUMBER OF PATTERNS
Number

of
pattern

Minimum
length of
pattern

Running
time
(ms)

10 2 32
50 2 39
100 2 48
150 2 48
200 2 51
250 2 60
300 2 63
350 2 63
400 2 64
450 2 69
500 2 73

FIGURE 3: RUNNING TIME OF AHO-CORASICK
ALGORITHM DEPENDING ON NUMBER OF PATTERNS

30
35
40
45
50
55
60
65
70
75

10 50 100 150 200 250 300 350 400 450 500

Ru
nn

in
g T

im
e

(m
s)

Number of Pattern (10 to 500)

Analysis of Multiple String Pattern Matching Algorithms
Akinul Islam Jony

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved
www.elvedit.com 349

But it has better performance with the larger length of pattern. As we can see that running time
in Aho-Corasick algorithm does not change too much with the larger length of pattern.

The Table 3 and Figure 5 shows the running time of Commentz-Walter algorithms with
different number of patterns (10 to 500 patterns) but the minimum length of pattern is 2. Like in
the Aho-Corasick algorithm, the running time of Commentz-Walter algorithm is also increasing
with the number of pattern increases.

TABLE 2: RUNNING TIME OF AHO-
CORASICK ALGORITHM DEPENDING

ON LENGTH OF PATTERNS
Number
of pattern

Length of
pattern

Running
time (ms)

10 3 32
10 4 33
10 5 33
10 6 35
10 7 39
10 8 39
10 9 39
10 10 47
10 11 47
10 12 47
10 13 48
10 14 48
10 15 48
10 16 48
10 17 49

FIGURE 4: RUNNING TIME OF AHO-CORASICK
ALGORITHM DEPENDING ON LENGTH OF PATTERNS

30

35

40

45

50

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ru
nn

in
g T

im
e

(m
s)

Length of Pattern (3-17)

TABLE 3: RUNNING TIME OF COMMENTZ-
WALTER ALGORITHM DEPENDING ON NUMBER

OF PATTERNS
Number of

pattern
Minimum length

of pattern
Running
time (ms)

10 2 30
50 2 38
100 2 46
150 2 48
200 2 49
250 2 54
300 2 58
350 2 60
400 2 62
450 2 67
500 2 70

FIGURE 5: RUNNING TIME OF COMMENTZ-WALTER
ALGORITHM DEPENDING ON NUMBER OF PATTERNS

30
35
40
45
50
55
60
65
70
75

10 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Ru
nn

in
g T

im
e

(m
s)

Number of Pattern (10 to 500)

International Journal of Advanced Computer Science and Information Technology
Volume 3, Issue 4, 2014, ISSN: 2296-1739

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved

www.elvedit.com 350

Table 4 and figure 6 shows the running time of Commentz-Walter algorithm with different
length of pattern (length 3 to 17) but fixed number of pattern (in this case 10). In Commentz-
Walter algorithm, if the length of pattern is increases, the running time is also increase. But the
running time of Commentz-Walter algorithms improved approximately linearly with increasing
length of the shortest pattern in the pattern set.

TABLE 4: RUNNING TIME OF COMMENTZ-
WALTER ALGORITHM DEPENDING ON

LENGTH OF PATTERNS
Number

of pattern
Length of
pattern

Running
time (ms)

10 3 31
10 4 33
10 5 33
10 6 34
10 7 36
10 8 37
10 9 39
10 10 41
10 11 41
10 12 43
10 13 44
10 14 44
10 15 46
10 16 47
10 17 47

FIGURE 6: RUNNING TIME OF COMMENTZ-WALTER
ALGORITHM DEPENDING ON LENGTH OF PATTERNS

30

35

40

45

50

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Ru
nn

in
g T

im
e

(m
s)

Length of Pattern (3-17)

TABLE 5: RUNNING TIME OF WU-MANBER
ALGORITHM DEPENDING ON NUMBER OF

PATTERNS
Number of

pattern
Minimum length

of pattern
Running
time (ms)

10 3 15
50 3 18
100 3 19
150 3 21
200 3 21
250 3 24
300 3 25
350 3 27
400 3 29
450 3 33
500 3 34

FIGURE 7: RUNNING TIME OF WU-MANBER
ALGORITHM DEPENDING ON NUMBER OF PATTERNS

10

15

20

25

30

35

40

10 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Ru
nn

in
g T

im
e

(m
s)

Number of Pattern (10 to 500)

Analysis of Multiple String Pattern Matching Algorithms
Akinul Islam Jony

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved
www.elvedit.com 351

The table 5 and figure 7 shows the running time of Wu-Manber algorithm with different number
of patterns (10 to 500 patterns) but the minimum length of pattern is 3. In Wu-Manber
algorithm, if the number of pattern is increases, the running time is also increase. But the
performance of this algorithm is better than the Aho-Corasick algorithm because, Wu-Manber
algorithm use block of character shifting while searching for a set of pattern in a given text.
Furthermore, as Aho-Corasick and Commentz-Walter algorithms are based on automata
approach, and hence, they consume more memory than Wu-Manber algorithm.

V. ANALYSIS & DISCUSSION

A linear time algorithm for multiple patterns matching problem proposed by Aho and Corasick
[1] is optimal in worst case but Boyer and Moore [4] demonstrated an algorithm where they
showed that it is possible to skip a large portion of the text while searching for certain patterns.
Eventually, this is working faster than linear algorithm in the average case. The Commentz-
Walter algorithm [2] combines the idea of Boyer and Moore technique with Aho-Corasick
algorithm for multiple patterns matching problem which is substantially faster than the Aho-
Corasick algorithm in practice. It uses the idea of Boyer Moore technique to skip a large portion
of the text while searching and as a result leading to faster than linear time algorithms in the
average case. There has another algorithm proposed by Baeza-Yates [6] which also combines the
idea of Boyer-Moore-Horspool algorithm [5] (which is a slight variation of the classical Boyer-
Moore algorithm) with the Aho-Corasick algorithm. Whereas, Wu-Manber algorithm is the most
efficient algorithm under some scenarios such as, long random patterns, low matching rate, and
low memory requirement. However, Aho-Corasick performance does not suffer great decline
when comparing with others as it is a linear time searching algorithm in worst case.

Independent from the pattern set size, searching time complexity for Aho-Corasick algorithm is
O(n) but when pattern set size increase, the memory consumption increased drastically and also
the time consumption increased. The performance of Commentz-Walter algorithms declined with
increasing number of pattern in a pattern set (pattern set size). But the performance of
Commentz-Walter algorithms improved approximately linearly with increasing length of the
shortest keyword/ pattern in the pattern set. Moreover, in [8, pp. 281], [9], A.V. Aho states that,

“In practice, with small numbers of keywords, the Boyer-Moore aspects of the
Commentz-Walter algorithm can make it faster than the Aho-Corasick algorithm,
but with larger numbers of keywords the Aho-Corasick algorithm has a slight
edge.”

This paper also found the above statement correct with the presented experimental result and
analysis. But the Aho-Corasick and Commentz-Walter algorithms consume lots of memory
because in the preprocessing stage both these algorithms use the automata data structure
whereas Wu-Manber algorithm consume much less memory than these two algorithms.

International Journal of Advanced Computer Science and Information Technology
Volume 3, Issue 4, 2014, ISSN: 2296-1739

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved

www.elvedit.com 352

VI. CONCLUSION

The algorithms that offer the solution for the multi-pattern matching problem, among them
Aho-Corasick, Commentz-Walter, and Wu-Manber algorithms are very popular solutions. A
comprehensive analysis and discussion of these selected algorithms as a state-of-the-art along
with some experimental results is covered in this article. This paper has presented the analysis
and discussion of the algorithms in order to understand the multiple pattern matching problem
in an easier manner.

The Aho-Corasick algorithm considers as a classic solution and core element of many other
pattern matching algorithms. Also it has been used in many other applications. As it is a linear
time algorithm, it is considered very useful solution for multiple pattern matching problems. On
the other side, Commentz-Walter algorithm seems to be the first sub-linear running time
algorithm for multiple-pattern matching problems in average case by using a sifting technique
where a large portion of the text is skipped while searching. The Wu-Manber algorithm has
excellent average case performance because of the successful use of shifting operation as a block
of characters. However, Wu-Manber algorithm has minimum length problem. If the minimum
length of pattern is less, then it is not as efficient as it should be. So it would be an optimization
area for Wu-Manber algorithm. For the Aho-Corasick and Commentz-Walter algorithms, memory
compression would be a good optimizing area as they consume lots of memory. Also subset
division of pattern set could be another way for the optimization of Aho-Corasick algorithm.

This paper mainly covers the analysis and discussion among Aho-Corasick, Commentz-Walter,
and Wu-Manber algorithms for multiple string pattern matching problems. A comprehensive
study on all the existing algorithms of multiple pattern matching problems would be a very
demanding material in the research area of multiple pattern matching problems.

REFERENCES

[1] Aho, Alfred V. & Corasick, Margaret J. (1975). Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18, 333-340.

[2] Commentz-Walter, Beate. (1979). A string matching algorithm fast on the average. Automata
Languages and Programming, 6, 118-132.

[3] Wu, Sun & Manber, Udi. (1994). A fast algorithm for multi-pattern searching. Technical Report TR-94-
17, University of Arizona.

[4] Boyer, R. S. & Moore, J. S. (1977). A fast string searching algorithm. Communications of the ACM, 20,
762-772.

[5] Horspool, N. (1980). Practical fast searching in strings. Software: Practice and Experience, 10, 501-506.

[6] Baeza-Yates, R. A. (1989). ‘Improved string searching, Software - Practice and Experience, 19, 257-271.

[7] Knuth, Donald E., Morris, James H., Pratt, Vaughan R. (1974). Fast pattern matching in strings.
Technical Report CS440, Computer Science Department, Stanford University, Stanford, California.

Analysis of Multiple String Pattern Matching Algorithms
Akinul Islam Jony

Copyright © 2014 Helvetic Editions LTD - All Rights Reserved
www.elvedit.com 353

[8] Aho, A. V. (1990). Algorithms for finding patterns in strings. Handbook of Theoretical Computer
Science In J. van Leeuwen (Ed.), (pp. 257-300). North-Holland, Amsterdam.

[9] Waston, B. W. (1994). The performance of single-keyword and multiple keyword pattern matching
algorithms.

[10] Wu, S. & Manber, U. (1992). Agrep – a fast approximate pattern-matching tool. In Proceedings
USENIX Winter 1992 Technical Conference, (pp. 153–162), San Francisco, CA.

[11] Fan, J.-J. & Su, K.-Y. (1993). An efficient algorithm for matching multiple patterns. IEEE

Transactions on Knowledge and Data Engineering, 5(2), 339–351.

[12] Navarro, G. & Raffinot, M. (2002). Flexible Pattern Matching in Strings, Practical Online Search
Algorithms for Texts and Biological Sequences. Cambridge University Press, Cambridge, UK.

[13] Allauzen, C. & Raffinot, M. (1999). Oracle des facteurs d’un ensemble de mots. Technical Report IGM
99-11, Institut Gaspard Monge, Universit´e de Marne-la-Vall´ee,France.

[14] Allauzen, C., Crochemore, M., Raffinot, M. (1999). Factor oracle: A new structure for pattern
matching. In J. Pavelka, G. Tel, and M. Bartosek, (Ed.), Theory and Practice of Informatics (Brno,
1999), volume 1725 of Lecture Notes in Computer Science, pp. 291–306. Springer-Verlag. In
Proceedings of the 26th Seminar on Current Trends in Theory and Practice of Informatics, Milovy,
Czech Republic.

AUTHOR’S BIOGRAPHY

Akinul Islam Jony born in Dhaka, Bangladesh. He received his M.Sc. degree in
Informatics at Technical University of Munich (TUM) in Germany. Previously he
completed his B.Sc. degree in Computer Science at American International University –
Bangladesh (AIUB) and Master degree in Information Technology at University of Dhaka
(DU) in Bangladesh. His current research interest includes algorithms, service-oriented
computing, distributed middleware system, and ubiquitous computing.

